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Abstract 

A comprehensive mathematical model has been developed to describe the process 
of multicomponent adsorption from a well-stirred bath. Both internal and external 
diffusional resistances were included in the physical model. A nonlinear Fritz- 
Schluender isotherm was used to describe the adsorption equilibrium. An infinite bath, 
one-component, non-equilibrium model was compared with an equilibrium model. A 
numerical solution for a binary system in an infinite bath was obtained. The 
numerical solution for a two-component model in a stirred finite bath was shown to 
satisfactorily match previously published experimental data. Its extension to an n- 
component system was shown. It was shown that the solution of nonequilibrium 
model is easier and more efticient than that of the equilibrium model. The 
nonequilibrium model is especially advantageous for a large number of solutes. 

INTRODUCTION 

The separation of solutes from a fluid stream by adsorption onto a solid 
surface is an important process and is especially important in advanced 
wastewater treatment processes. The limitations of theoretical concepts 
relative to the practicalities of treatment for industrial wastewater necessi- 
tates that comprehensive process simulation studies precede the final design 
decision. 
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480 MANSOUR ET AL. 

TABLE 1 
Previous Work 

Type of Number of 
Film equilibrium components Type of 

Investigator resistance isotherm considered treatment 
_ _ _ ~  
DiGiano and Weber 

Suzuki and Kawazoe 

Liapis and Rippin 

Weber (13) 
Peel and Benedek 

( 4 )  

( 1 4  

(6) 

(10) 

Yes Langmuir 1 Experimental and 

No Linear 1 Experimental and 

Yes Fritz-Schluender 2 Numerical 

analytical 

analytical 

Yes Irreversible 1 Analytical 
Yes Linear and 1 Experimental and 

quadratic analytical 

Many investigators have studied multicomponent adsorption as shown in 
Table 1. None of the existing models has accounted for all the following 
factors: 

1. 
2. 
3. 
4. 
5 .  
6 .  

Intraparticle diffusional resistance 
Interparticle diffusional resistance 
Nonequilibrium conditions 
Nonlinear equilibrium relationship 
Interphase film resistance 
Capability of models to be used for n-component systems 

In the present study, all of these factors are taken into account. 

MATHEMATICAL ANALYSIS 

Physical Model 

The present work is concerned with removal of solutes from a fluid stream 
by adsorption onto a solid surface of spherical particles. The solute to be 
removed is transferred from the fluid phase to the solid phase according to 
the following steps: 

1. Mass transport from bulk fluid to pore fluid at the particle surface 
2. Diffusion into the porous solid 
3. Adsorption onto the solid surface 
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NONEQUILIBRIUM MULTICOMPONENT ADSORPTION MODEL 481 

The equilibrium existing between the fluid and the solid concentration is 
assumed to be given by Fritz-Schluender ( 5 )  isotherm: 

where C$ is the amount of solute i adsorbed per unit volume of particle at 
equilibrium with a liquid-phase concentration C,;, in a solution containing n 
solutes. The equilibrium isotherms for the bisolute system used in this study 
were taken from Liapis and Rippin (6) ,  and these are 

where butanol-2 is taken as Component 1 and t-amyl alcohol as Component 
2; b;, and b, are empirical constants. 

In this process the radial concentration profiles of solutes inside the 
particles as well as the bulk concentration in the bath are to be determined as 
functions of time. 

Mathematical Models 

1. Infinite-Bath Nonequilibrium Model 

For any solute i, two differential equations result from mass balances in 
the pore liquid and on the adsorbent surface to describe the pore and the 
surface concentrations inside the particles. These equations are: 

(2) 
1 d  dC d Cpi 

E D ,- - (?-$) - Kl , i (C$  - Csi) = E - 
p' 2 dr  at 

( 3 )  dt  

for i =  1, 2 , .  . . . n. 
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482 MANSOUR ET AL. 

Equations (2) and (3) contain three dependent variables since C$ is also 
unknown. C2 is expressed in terms of Cpj by Eq. (1). The initial and 
boundary conditions needed for Eqs. (2) and (3) are 

C& 0) = 0 (4) 

dC 
ar 

(0, t )  = 0 2 ( 5 )  

CJr,  0 )  = 0 ( 7 )  

( 0 ,  t )  = 0 dC,i 
dr 

It can be easily shown that the multicomponent model composed of n solutes 
consists of 2n partial differential equations, n isotherms, 4n boundary 
conditions, and 2n initial conditions. 

2. Finite-Bath Nonequilibrium Model 

The finite-bath model is similar to the infinite bath model except that the 
concentration of solutes in the surrounding fluid, Cdi,  varies with time for a 
finite bath. Variation of this concentration with time is described for any 
solute i by the following differential equation: 

where cB is the void fraction of bath. 
The initial condition needed to complete the definition of Eq. (10) is 

The set of Eqs. (1)-(3) is used for each solute. Equations (2) and (3) are 
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NONEQUlLlBRlUM MULTICOMPONENT ADSORPTION MODEL 483 

coupled in C$ and C,; for solute i through the interphase adsorption term, 
K1,JC$ - C,;). The pairs for all solutes are also coupled through the 
equilibrium relation of Eq. (1). Also, each pair for a specific solute is coupled 
with Eq. (10) through the interphase term, Kfi(Cdj - CPi). Since the 
equations are highly nonlinear, an iterative numerical procedure was 
followed to solve each set of equations. 

3. Equilibrium Model 

One purpose of using this model was to study the possibility of simulating 
adsorption equilibrium with the nonequilibrium model by using large values 
for Kl . Therefore Eqs. (2) and (3) do not contain the adsorption term, Ki,; 
(Cz - C,;). For this case Cz = C,; =fi( CPl , Cp2, . . . , C,,), and thus Eqs. 
(2) and (3) have only one dependent variable each. The governing equation 
is: 

where C,i =A ( C,,, Cp2, . . . , c,,). 

METHOD OF NUMERICAL SOLUTION 

Linearization of Equations 

Equations (2) and (3) are highly nonlinear partial differential equations. 
To eliminate the nonlinearity arising from the term C,T which is defined in Eq. 
(l), an iterative procedure from the finite-difference equations is followed. 
The denominator of this expression is evaluated with values computed from 
the previous iteration. The nonlinear term C$ is put in the form CT 
= C,F(C,,!), which is linear in C, since CfA is the value obtained from the 
previous iteration. At the end of each iteration the absolute difference 
between C, and C,, is compared with a set tolerance. If it does not match, 
the computed values of C, are used as C,,.,, and another set of values is 
computed. 
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MANSOUR ET AL. 484 

Finite-Diff erence Equations 

For any component i, both the backward and Crank-Nicolson methods are 
suitable to solve the set of Eqs. (2) and (3) since they are unconditionally 
stable (3, 12). Also, the same system has been solved by Mansour (9) and 
shown to be unconditionally stable. Since Crank-Nicolson method may 
cause some oscillations at the boundries, the backward method was used in 
this study. Details of the finite-difference equations are described in the 
Appendix. 

Scheme of Numerical Solution 

The finite-difference equations obtained from Eqs. (2) and (3) form a bi- 
tridiagonal system. This system is solved by the algorithm for bi-tridiagonal 
matrices (12) using the subroutine BTD which has been written by Mansour 
(7). This algorithm is used to solve for the variables Cs’s and Cp’s during each 
iteration at a given time step. After convergence is obtained, the coefficients 
of the matrices are updated, and the procedure is repeated for the next time 
step. 

Solution of Finite-Bath Model 

In the infinite-bath model described above, the bulk concentration Cdi , in 
the boundary condition described by Eq. (6 ) ,  is taken as a constant, and it 
appears in the right-hand side matrices of the difference equations. 

For the finite-bath model, all the difference equations are exactly the same 
for the infinite-bath model except for Eq. (10) which describes the variation 
of Cdi with time. Therefore the difference equation obtained from Eq. (10) is 
substituted into the difference equation of Eq. (6). After some manipulation 
processes, the variable Cdi is expressed as a function of C, at the boundary 
and its value in the previous time step. At the end of each time step the value 
of Cdi is updated and the process is repeated. 

Solution of Equilibrium Model 

The finite-difference equation arising from Eq. ( 12) forms a tridiagonal 
system which can be iteratively solved by using the Thomas algorithm 
(12). 
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Solution of Multicomponent Model 

This model consists of a pair of coupled partial differential equations and 
an equilibrium relationship for each component. The equilibrium-solid 
concentration of each component is expressed as a function of the pore 
concentration of all components. The initial and boundary conditions are 
similar to those for the one- and two-component cases. Values of the pore 
concentrations are assumed for use in the denominators of the equilibrium 
relations. By use of these values, the pair of equations for each component is 
uncoupled from the pairs for the other components, and all the finite- 
difference equations are linearized. As in the other models, these equations 
fit bi-tridiagonal algorithm and are readily solved for each component. 

RESULTS AND DISCUSSION 

Comparison of Equilibrium and Nonequilibrium One-Component 
Models 

The purpose of this comparison is to determine whether the nonequili- 
brium model, with large value ofK, , gives the same results as the equilibrium 
model. Test runs for different values of K, were made, and the results show 
that when Kl is 2 or larger, equilibrium between C’; and C,; is attained. 
Results obtained from the solution of the nonequilibrium model described by 
Eqs. (2) and (3), as shown in Table 2, are in an excellent agreement with 
those obtained from the solution of the equilibrium model described by Eq. 
( 12), provided equilibrium between C,; and C,; is described by the following 
Langmuir isotherm: 

The values of parameters used are: 

a10 = 171.07 = 1400 ~p = 0.7 

R = 0.1 c,, = 0.001 Kf = 2.205 X 

D, = 7.4 x 10-6 D, = 1.25 x 10-7 

As shown in Table 2, for large value of K ,  the equilibrium and the 
nonequilibrium models are equivalent. In addition to this, there are two total 
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TABLE 2 
Comparison of Equilibrium and Nonequilibrium One-Component Models 

~ 

rlR 0.0 0.2 0.4 0.6 0.8 1 .o 

0.238 X Cpe9 
Cpne9 0.227 X 
Cseq 0.407 X 
Csne9 0.388 X 

Cpeq 0.408 X 
Cpneq 0.395 X 
Cseq 0.698 X 
Csnq 0.675 X 

Cpe9 0.526 X 
Cpw 0.518 X lop2' 
Cse9 0.899 x 10-l~ 
csn, 0.886 x 10-Ig 

0.205 X 
0.194 X 
0.350 X 
0.332 X 

0.172 x 10-19 
0.161 x 10-19 
0.294 X 
0.275 X 

0.122 x 10-17 
0.117 x 10-17 
0.209 x 10-l~ 
0.200 x 10- 

Time = 20 s 

0.166 X lo-" 
0.154 X 0.151 X 
0.284 X 0.279 X 
0.263 X 0.258 X 

0.163 X lo-'* 

Time = 60 s 

0.560 X 0.253 X lo-" 
0.549 X 0.244 X lo-" 
0.958 X 0.433 X 
0.934~ 10-13 0.417 x 10-9 

Time = 100s 

0.190 X 0.231 X 

0.325 X lo-" 0.359 X 
0.311 X 0.383 X lop7 

0.182 x 10-13 0.224~ 10-9 

0.145 x 10-7 
0.132 x 
0.248 x 10-~ 
0.226 x IO-~ 

0.274 X 
0.266 X lop6 
0.468 x IO-~ 
0.455 x 

0.120~ 10-5 
0.114~ 10-5 

0.195 x 10-3 
0.204X 

0.100 x 10-2 
0.100 x 10-2 
0.712 X 10-I 
0.712 X 10-1 

0.100 x 10-2 
0.100 x 10-2 
0.712 X lo-' 
0.712 X 10-I 

0.100 x 10-2 
0.100 x 10-2 
0.712 X lo-' 
0.712 X lo-' 
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derivatives containing C'; and Csi to be determined from the equilibrium 
relation when the equilibrium model is used. In the case of a twcxomponent 
system, there are 10 partial derivatives containing Cpi)s and Csi's to be 
determined. For three-component systems, there are 27 partial derivatives. 
Therefore, it is obvious that partial differential equations become very 
complex when the number of sorbates becomes large. Moreover, the 
nonequilibrium model could be extended to be used for any number of 
sorbates , while a new computer program must be written as a new sorbate is 
added to the system when equilibrium model is used. 

Pore and Surface Concentration Profiles Inside Particles 
(Inf inite-Bath Model) 

Figure 1 through 4 illustrate the increase in sorbate concentration within 
the particle. Although the pore diffusivities were larger than the surface ones, 
the surface concentrations were 30 to 70 times greater than the pore 

"'I 
0.9 - 
0.8 - 
0.7 - 

0.3 - 

'0 0.1 0.2 0.3 0.1 0.5 Q6 0.7 0.0 0.9 
r l R  

0 

FIG. 1 .  Pore-concentration profile of Component 1 .  
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488 MANSOUR ET AL. 

r / R  

FIG. 2. Pore-concentration profile of Component 2. 

concentrations by nature of the equilibrium. Adsorbate 2 diffuses more 
rapidly into the particle than Sorbate 1 since both its diffusivities are larger 
than those for Adsorbate 1. The surface becomes saturated with the 
adsorbates much faster than the pore liquid since the denominators in the 
equilibrium relations compensate for the lower values of the pore concentra- 
tions in the numerators. Notice that, at 5982 s, the surface concentrations are 
much nearer to the values at the outer radius than are the pore concentra- 
tions. Finally, at a time of 9701 s, all four concentrations have nearly 
reached the values at  the outer radius of the particle. 

Results for the Two-Component Finite Bath Model 

The values of parameters for this model were also used experimentally by 
Balzli (2) where butanol is taken as Component 1, and t-amyl alcohol as 
Component 2. These values are: 
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D 
rl R 

FIG. 3. Surface-concentration profile of Component 1. 

~p = 0.94 EB = 0.9859 Gi = 0.0005 
C02 = 0.0005 Kj, = 4.472 X Kf2 = 4.132 X lo-’ 

Kl,l = 1.92 K1,2 = 1.76 Dpl = 7.4 x 
Dp2 = 13.0 X lop6 

R = 0.05 

Dsl = 1.25 X Ds2 = 2.2 X l E 7  

The coefficients in the isotherms were given in Equations (la) and (lb). 
Figure 5 shows a good agreement between the theoretical predictions of this 
study and experimental data obtained by Balzli (2). However, the deviations 
noticed in the initial times of adsorption are due to the uncertainties in the 
values of diffusion rate constants which were used by Liapis and Rippin (6) 
since they used them for a little bit different model. 
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%4 

Y 
U 

N 
Y 

U 
f 2505/ I 

0.1 F 
'0 v 0.1 0.2 0.3 0.L 0.5 0.8 0.7 0.8 0.9 

0 
r / R  

FIG. 4. Surface-concentration profile of Component 2. 

With the backwarddifference method, which is unconditionally stable, it 
was easy to start with a small time step and increase it successively for the 
remainder of the solution, which implies that the computer time will be 
shorter than that consumed in other methods. (The computer time consumed 
for binary adsorption in a finite bath using orthogonal collocation was in the 
range of 105-170 s (6) ,  while it is only 68 s for the same system when the 
difference method is used.) 

CONCLUSIONS 

A comprehensive computer simulation program for multicomponent 
adsorption from a finite bath has been successfully used to predict theoretical 
results that have been shown to satisfactorily match experimental results. 

The advantages of the computer program can be summarized as follows: 
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FIG. 5. Simultaneous adsorption of butanol-2 and 1-my1 alcohol in a finite bath. (- -) 
Mathematical data, (0 )  experimental data of butanol-2, ( A )  experimental data of 1-my1 
alcohol. 

1. It is applicable to both equilibrium and nonequilibrium conditions. 
2. It is a general program that can be used for any number of sorbates. 
3. It can be used for any type of equilibrium isotherm without the need of 

any modifications in the program since the most general type of 
isotherms was used. 

4. It is more comprehensive than other programs since it yields radial 
concentration variations and takes into account internal, external, and 
interfacial resistances. 

5 .  Although the general model is very complex, the program has been 
structured to be flexible and easy to use. 

6. Moreover, with the backward-difference method used, which is 
unconditionally stable, one can use a variable and large time step for 
the solution, which implies that the computer time is considerably 
shorter than that consumed in other methods. 
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APPENDIX 

The backward-finite difference form of Eq. ( 2 )  for one solute is 

for 2 5 i I N  and i -Cj I JMAX. 

as 
The above equation can be written in the form of bi-tridiagonal matrices 

where A$’)  = 0 
A!’) = -EpDpAt + %DpAtAr/ri 
B[’)  = -K,At(Ar)2 
BIZ) = 2$DpAt + KlAt(~(CpAi) (Ar)2  + Ep(Ar)z 
C$” = 0 

%DP At Ar 

ri 

0:’) = a(Ar)2Cp, 

Equation (4) does not apply at r = 0 since the term (dC, /dr)lr becomes 
indeterminant. Therefore L‘Hospital’s rule is used to evaluate the term. 
Taking the 

acp iar - - d2cp idr2 
lim 
r-O r 1 

Thus Eq. ( 2 )  at this boundary becomes 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



NONEQUlLlBRlUM MULTICOMPONENT ADSORPTION MODEL 493 

The finite difference equation resulting from Eq. (AS) is 

The fictitious value contained in Eq. (A4) is eliaLXiated by using the 
difference Eq. (A5) which results from Eq. ( 5 )  as follows: 

which implies that CN, j+l = C p ,  j+l . 
Thus the resulting finite difference equation at this point is 

Equation (A6) gives another fictitious point at the boundary r =  R which is 
eliminated by using Eq. (A7) which results from Eq. (6):  

Thus the fictitious point CpN+l,j+l is expressed in terms of the interior point 
CpN-I, j+l * 

The finite difference equation at this boundary becomes 
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494 MANSOUR ET AL. 

Similarly, the finite difference of Eq. (3) and the finite difference equations 
using the boundary conditions (8) and (9) can be written, respectively, as 

A ~ ~ ) C ~ ; - I , ~ + ~  + ~ j ~ ) ~ , ; - l , ; + l  + ~ $ ~ ) ~ s i , j + l  + ~ ( ~ ) ~ p i , j + l  + c J 3 ) c s i + l , j + 1  

+ ci4) c,,+, , j +  1 = D $ ~ )  (-49) 

f o r 2 I i S N a n d  1 SjSJMAX. 

SYMBOLS 

ajo, ajj 
bt,, bii 
c d i  
C0; initial value of cdi 

coefficients in Eq. ( 1 )  
exponents in Eq. (1) 
concentration of solute i in fluid phase of the bath (g/cc) 

concentration of solute in pore-fluid phase (g/cc) 
value of C, assumed 

CP 
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concentration of solute phase (per unit volume of particles) 

effective diffisivity in pore fluid ( cm2/s) 
effective diffisivity in particle solid phase (cm2/s) 
mass-transfer coefficient between liquid and particle (cm/s) 
adsorption rate constant for solute i (h-’) 
number of adsorbed solutes 
radial distance in particle (cm) 
radius of particle (cm) 
time (s) 

Greek Letters 

Ar 
At increment in time 
E~ bath void fraction 
~p particle void fraction 

increment along the radius r 

Superscripts 

* equilibrium value 

Subscripts 

eq equilibrium value 
i 
j time-step index 
JMAX 
N 
neq nonequilibrium value 
P pore 
S solid 

index for grid points along the radius 

maximum number of time steps 
number of increments along the radius 
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