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Abstract

A comprehensive mathematical model has been developed to describe the process
of multicomponent adsorption from a well-stirred bath. Both internal and external
diffusional resistances were included in the physical model. A nonlinear Fritz-
Schluender isotherm was used to describe the adsorption equilibrium. An infinite bath,
one-component, non-equilibrium model! was compared with an equilibrium model. A
numerical solution for a binary system in an infinite bath was obtained. The
numerical solution for a two-component model in a stirred finite bath was shown to
satisfactorily match previously published experimental data. Its extension to an n-
component system was shown. It was shown that the solution of nonequilibrium
model is easier and more efficient than that of the equilibrium model. The
nonequilibrium model is especially advantageous for a large number of solutes.

INTRODUCTION

The separation of solutes from a fluid stream by adsorption onto a solid
surface is an important process and is especially important in advanced
wastewater treatment processes. The limitations of theoretical concepts
relative to the practicalities of treatment for industrial wastewater necessi-
tates that comprehensive process simulation studies precede the final design
decision.

479
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TABLE 1
Previous Work
Type of Number of
Film equilibrium components Type of
Investigator resistance isotherm considered treatment
DiGiano and Weber Yes Langmuir 1 ‘ Experimental and
(€)) analytical
Suzuki and Kawazoe No Linear 1 Experimental and
(15 analytical
Liapis and Rippin Yes Fritz-Schluender 2 Numerical
(6)
Weber (13) Yes Irreversible 1 Analytical
Peel and Benedek Yes Linear and 1 Experimental and
(10) quadratic analytical

Many investigators have studied multicomponent adsorption as shown in
Table 1. None of the existing models has accounted for all the following
factors:

Intraparticle diffusional resistance

Interparticle diffusional resistance

Nonequilibrium conditions

Nonlinear equilibrium relationship

Interphase film resistance

Capability of models to be used for n-component systems

S =

In the present study, all of these factors are taken into account.

MATHEMATICAL ANALYSIS

Physical Model

The present work is concerned with removal of solutes from a fluid stream
by adsorption onto a solid surface of spherical particles. The solute to be
removed is transferred from the fluid phase to the solid phase according to
the following steps:

1. Mass transport from bulk fluid to pore fluid at the particle surface
2. Diffusion into the porous solid
3. Adsorption onto the solid surface
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The equilibrium existing between the fluid and the solid concentration is
assumed to be given by Fritz-Schluender (5) isotherm:

a,-OCﬁf-'O
C.S?‘I‘:_——"—-—_——b_=-fl‘(cplﬁ Cp29---9Cpn) (1)
¢t 2 a;Cpf
where C¥ is the amount of solute / adsorbed per unit volume of particle at
equilibrium with a liquid-phase concentration C,;, in a solution containing n
solutes. The equilibrium isotherms for the bisolute system used in this study
were taken from Liapis and Rippin (6), and these are

1.06C12"
Ch= 812 | () 6260764 (1a)

pl P2

1.07C3*

ch=
T CO% +0.045C08

(1b)

where butanol-2 is taken as Component 1 and 7-amyl alcohol as Component
2; by and b; are empirical constants.

In this process the radial concentration profiles of solutes inside the
particles as well as the bulk concentration in the bath are to be determined as
functions of time.

Mathematical Models

1. Infinite-Bath Nonequilibrium Model

For any solute 7, two differential equations result from mass balances in
the pore liquid and on the adsorbent surface to describe the pore and the
surface concentrations inside the particles. These equations are:

D_l___ai(rzacpi>_K (C%—C,;)= _g.gé’i (2)
ep 'Di r2 ar ar 1,i si si) €p ot
1 ¢ oC; oC,;
— — P2 |+ K, (C*— C..)=—"T"T
DS! r2 or (r or ) l,z( 51 Csl) ot (3)

fori=1,2,....n
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Equations (2) and (3) contain three dependent variables since C¥ is also
unknown. C#¥ is expressed in terms of C, by Eq. (1). The initial and
boundary conditions needed for Eqgs. (2) and (3) are

Cpi(r, 0)=0 4)
GCP,-
——(0,nH=0 (5)
or
0C,;

&D,; e (R, 1) =K;(Cy; — C,i(R, 1)) (6)
C,(r, 0)=0 (7
aC,;

——(0,5)=0 (8)
or

aCsi

— R, 1)=0 (9
or

It can be easily shown that the multicomponent model composed of r solutes
consists of 2n partial differential equations, n isotherms, 4rn boundary
conditions, and 2» initial conditions.

2. Finite-Bath Nonequilibrium Model

The finite-bath model is similar to the infinite bath model except that the
concentration of solutes in the surrounding fluid, C,;, varies with time for a
finite bath. Variation of this concentration with time is described for any
solute 7 by the following differential equation:

dCd,- _ 3Kﬁ(1 - EB)
dt Reg

(Cpi - Cdi)fr=R (10)

where g is the void fraction of bath.
The initial condition needed to complete the definition of Eq. (10) is

C,(t)=C'd,0 att = (Il)

The set of Eqgs. (1)-(3) is used for each solute. Equations (2) and (3) are
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coupled in C} and C; for solute i through the interphase adsorption term,
K, ;(C¥— C,). The pairs for all solutes are also coupled through the
equilibrium relation of Eq. (1). Also, each pair for a specific solute is coupled
with Eq. (10) through the interphase term, K;(C; — C,). Since the
equations are highly nonlinear, an iterative numerical procedure was
followed to solve each set of equations.

3. Equilibrium Model

One purpose of using this model was to study the possibility of simulating
adsorption equilibrium with the nonequilibrium model by using large values
for K;. Therefore Eqgs. (2) and (3) do not contain the adsorption term, K ;
(C¥% — Cy;). For this case C% = C; = fi(Cyy, Cpa, ..., Cy), and thus Egs.
(2) and (3) have only one dependent variable each. The governing equation
is:

0C,;  9Cy 1 0 (P9C,) 1 9 ( acs,.)
—2 4+ =¢gD)i— — ——2 + D, — — | P —
7o ot P2 5 o 2 ar\" or
(12)
where C; = fi (Cp1, Cpz, ..., Con).

METHOD OF NUMERICAL SOLUTION

Linearization of Equations

Equations (2) and (3) are highly nonlinear partial differential equations.
To eliminate the nonlinearity arising from the term C.¥ which is defined in Eq.
(1), an iterative procedure from the finite-difference equations is followed.
The denominator of this expression is evaluated with values computed from
the previous iteration. The nonlinear term C} is put in the form C¥
= C,F(C,4), which is linear in C, since C,, is the value obtained from the
previous iteration. At the end of each iteration the absolute difference
between C, and C,, is compared with a set tolerance. If it does not match,
the computed values of C, are used as C,,, and another set of values is
computed.
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Finite-Difference Equations

For any component #, both the backward and Crank-Nicolson methods are
suitable to solve the set of Egs. (2) and (3) since they are unconditionally
stable (3, 12). Also, the same system has been solved by Mansour (9) and
shown to be unconditionally stable. Since Crank-Nicolson method may
cause some oscillations at the boundries, the backward method was used in
this study. Details of the finite-difference equations are described in the
Appendix.

Scheme of Numerical Solution

The finite-difference equations obtained from Egs. (2) and (3) form a bi-
tridiagonal system. This system is solved by the algorithm for bi-tridiagonal
matrices (/2) using the subroutine BTD which has been written by Mansour
(7). This algorithm is used to solve for the variables C,’s and C,’s during each
iteration at a given time step. After convergence is obtained, the coefficients
of the matrices are updated, and the procedure is repeated for the next time
step.

Solution of Finite-Bath Model

In the infinite-bath model described above, the bulk concentration C,;, in
the boundary condition described by Eq. (6), is taken as a constant, and it
appears in the right-hand side matrices of the difference equations.

For the finite-bath model, all the difference equations are exactly the same
for the infinite-bath model except for Eq. (10) which describes the variation
of C,; with time. Therefore the difference equation obtained from Eq. (10) is
substituted into the difference equation of Eq. (6). After some manipulation
processes, the variable C,; is expressed as a function of C, at the boundary
and its value in the previous time step. At the end of each time step the value
of C,; is updated and the process is repeated.

Solution of Equilibrium Model

The finite-difference equation arising from Eq. (12) forms a tridiagonal
system which can be iteratively solved by using the Thomas algorithm
12).
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Solution of Multicomponent Model

This model consists of a pair of coupled partial differential equations and
an equilibrium relationship for each component. The equilibrium-solid
concentration of each component is expressed as a function of the pore
concentration of all components. The initial and boundary conditions are
similar to those for the one- and two-component cases. Values of the pore
concentrations are assumed for use in the denominators of the equilibrium
relations. By use of these values, the pair of equations for each component is
uncoupled from the pairs for the other components, and all the finite-
difference equations are linearized. As in the other models, these equations
fit bi-tridiagonal algorithm and are readily solved for each component.

RESULTS AND DISCUSSION

Comparison of Equilibrium and Nonequilibrium One-Component
Models

The purpose of this comparison is to determine whether the nonequili-
brium model, with large value of K|, gives the same results as the equilibrium
model. Test runs for different values of K, were made, and the results show
that when K, is 2 or larger, equilibrium between C, and Cy is attained.
Results obtained from the solution of the nonequilibrium model described by
Egs. (2) and (3), as shown in Table 2, are in an excellent agreement with
those obtained from the solution of the equilibrium model described by Eq.
(12), provided equilibrium between C,; and Cj; is described by the following
Langmuir isotherm:

— a0 Cpi
o 1+ a Cpi
The values of parameters used are:
Ay = 171.07 ag = 1400 £p=0'7
R=0.1 C,y=0.001 K;= 2205X10*

D,=74X10°% D ,=125X10"

As shown in Table 2, for large value of K, the equilibrium and the
nonequilibrium models are equivalent, In addition to this, there are two total
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derivatives containing C,; and C; to be determined from the equilibrium
relation when the equilibrium model is used. In the case of a two-component
system, there are 10 partial derivatives containing C,’s and C,’s to be
determined. For three-component systems, there are 27 partial derivatives.
Therefore, it is obvious that partial differential equations become very
complex when the number of sorbates becomes large. Moreover, the
nonequilibrivm model could be extended to be used for any number of
sorbates, while a new computer program must be written as a new sorbate is
added to the system when equilibrium model is used.

Pore and Surface Concentration Profiles Inside Particles
(infinite-Bath Model)

Figure 1 through 4 illustrate the increase in sorbate concentration within
the particle. Although the pore diffusivities were larger than the surface ones,
the surface concentrations were 30 to 70 times greater than the pore

1.1

o t= 9701sec

0.9 8084

Cp'l/cdl
©
o

o
)

1 I 1
0 01 02 03 04 05 06 07 08 09 1.0
r/iR

F1G. 1. Pore-concentration profile of Component 1.
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1.1
1.0k t =9701sec
8084
0.9
[+X.] o
07
5982
S o6}
[5)
~
Hosk
JH08
0.4
3799
2505
03 1696
1049
0.2}~
0.1~
0 1 | 1 1 ] 1
0 01 02 03 04 05 06 97 08 09 10
r/R

F1G. 2. Pore-concentration profile of Component 2.

concentrations by nature of the equilibrium. Adsorbate 2 diffuses more
rapidly into the particle than Sorbate 1 since both its diffusivities are larger
than those for Adsorbate 1. The surface becomes saturated with the
adsorbates much faster than the pore liquid since the denominators in the
equilibrium relations compensate for the lower values of the pore concentra-
tions in the numerators. Notice that, at 5982 s, the surface concentrations are
much nearer to the values at the outer radius than are the pore concentra-
tions, Finally, at a time of 9701 s, all four concentrations have nearly
reached the values at the outer radius of the particle.

Results for the Two-Component Finite Bath Model

The values of parameters for this model were also used experimentally by
Balzli (2) where butanol is taken as Component 1, and z-amyl alcohol as
Component 2. These values are:
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1.1

1.0k t = 9701 sec
03 5982
0.8
0.7}
»*_
O 0.6
g
2 o0s
0.4
03
0.2
0.1
o0 01 02 03 04 05 06 07 08 09 10
riR
F1G. 3. Surface-concentration profile of Component 1.
g =094 g = 0.9859 G =0.0005
C,, = 0.0005 K =4472X107° K,=4.132X 107
K, =192 K,,=1.16 D, =17.4X10°

D,,;=130X10°¢ D,=125X10"7 D,=22X10"
R =0.05

The coefficients in the isotherms were given in Equations (1a) and (1b).
Figure 5 shows a good agreement between the theoretical predictions of this
study and experimental data obtained by Balzli (2). However, the deviations
noticed in the initial times of adsorption are due to the uncertainties in the
values of diffusion rate constants which were used by Liapis and Rippin (6)

since they used them for a little bit different model.
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15920158
5982
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0.6

0.5
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0.4

03

0.2

0.1

1 1 1 1 § 1
0 0.1 02 03 04 05 08 07 o088 09 10
r/R

0 1

FiG. 4. Surface-concentration profile of Component 2.

With the backward-difference method, which is unconditionally stable, it
was easy to start with a small time step and increase it successively for the
remainder of the solution, which implies that the computer time will be
shorter than that consumed in other methods. (The computer time consumed
for binary adsorption in a finite bath using orthogonal collocation was in the
range of 105-170 s (6), while it is only 68 s for the same system when the
difference method is used.)

CONCLUSIONS

A comprehensive computer simulation program for multicomponent
adsorption from a finite bath has been successfully used to predict theoretical
results that have been shown to satisfactorily match experimental results.

The advantages of the computer program can be summarized as follows:
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1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1} )
-0 T 18 24 30 3% 42 485 54

o x10—2 secC

F1G. 5. Simultaneous adsorption of butanol-2 and 1-amy! alcohol in a finite bath. (- -)
Mathematical data, (O) experimental data of butanol-2, (A) experimental data of 1-amyl
alcohol.

. It is applicable to both equilibrium and nonequilibrium conditions.

. It is a general program that can be used for any number of sorbates.

. It can be used for any type of equilibrium isotherm without the need of
any modifications in the program since the most general type of
isotherms was used.

4. It is more comprehensive than other programs since it yields radial
concentration variations and takes into account internal, external, and
interfacial resistances.

5. Although the general model is very complex, the program has been
structured to be flexible and easy to use.

6. Moreover, with the backward-difference method used, which is

unconditionally stable, one can use a variable and large time step for

the solution, which implies that the computer time is considerably
shorter than that consumed in other methods.

W N =
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APPENDIX

The backward-finite difference form of Eq. (2) for one solute is
CpiAl,j+1 “2Cpi,j+1 + Cpt’+1,j+l 2£pr Cpi+l,j+l — Cpi—l,j+1 .
gD, 2 +
(Ar) r; 2Ar

[ Cpi.j+l - Cpi.j
At

+ Kl(csi,j-H - F(CpAi)Cpi,j+l =€

P

| @n

for 2<i<Nandi<j<IMAX.
The above equation can be written in the form of bi-tridiagonal matrices
as

AV Cyimy o1 AP Cpimy jiy + BV Cyjy + B Cpi i
+ CVCoitr 1 + CFCpigy i = DY (A2)

where A{V =0
AP = —g,D,At + &,D,AtAr/r,
B = —K,At(Ary
B® = 26 D, At + K, At(F(C, i (AFY + &,(Ar}?
ch=0

. (EPDPA, , &D,AMAr )
r.

H

DY = g,(AryC,;
Equation (4) does not apply at r = O since the term (9C,/dr)/r becomes
indeterminant. Therefore L’Hospital’s rule is used to evaluate the term.
Taking the

oC, /o 0%C,/or?
lim —* for = 2/
r—0 r 1
Thus Eq. (2) at this boundary becomes
2

a°C, aC,
36,D, —=F + Ki(C, = CF(Cpu)) = & — 2 (A3)




13:27 25 January 2011

Downl oaded At:

NONEQUILIBRIUM MULTICOMPONENT ADSORPTION MODEL 493

The finite difference equation resulting from Eq. (A5) is

Coo. 41 —2C,1,; + Cpa;
3spr[ i (AI:)}J p2'1+l]+K1(Cs1,j+1‘F(CpAl)(Cpf.jﬂ))

= sp [_ pl,jtl1 p 1111] (A4)

A

The fictitious value contained in Eq. (Ad4) is eliminated by using the
difference Eq. (A5) which results from Eq. (5) as follows:

Cpa,j+1 — Cpo, 41 -
2Ar

0 (AS)

which implies that Cyo j+1 = Cpa,j+1.
Thus the resulting finite difference equation at this point is

AV Cyo, 01 T AP Cpo 41 + BV Cyi e + B Cpi, 1
+ CVCy, j+1 + CP Cpy. jr1 = DV (A6)

where AV =0
AP =0
BV = K, At(Ary
B = —(6¢,D,At + K, At(Ar)’F(C,4,) + &(Ar))
ch=0
CP® = 6¢,D,At
D= —¢,(Ar)*Cp;

Equation (A6) gives another fictitious point at the boundary » = R which is
eliminated by using Eq. (A7) which results from Eq, (6):

C iv1 — Con—1.;
epr ( PN+1,J+!2Ar pN—1,j+1 >=Kf(cdj+1 _ pN+1,j+1) (A7)

Thus the fictitious point Cyy4 j+; is expressed in terms of the interior point
C:0N—1,j+1 .
The finite difference equation at this boundary becomes
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AW Con—1j1 + AN Con—y j+1 + BV Conjer + BP Cop iy
+ C¥)) Conr, j41 + CRLConar,j+1 = DY, (A8)

where AY,, =0
AR, = 2¢,D,At
Byy = K| At(ArY
BR., = 2¢,D,At + Ky A(APYF(Cpan+1) + &(ArY + 2K AtAr

2K, AtAr
+.—__.
N
qslrln =0
Cf1 =0

D), = —e,(APC ;= 2KAA+‘2Kf—AtAr ;
+1 &(ArY Con+1,j s ALAF N di+1

Similarly, the finite difference of Eg. (3) and the finite difference equations
using the boundary conditions (8) and (9) can be written, respectively, as

AP Comy jr + AW Cpiy 1 + BIC, jiy +BCp 0y + CP Cyir, a1
+ C$4)Cpi+1,j+1 =D (A9)

for2<i<Nand 1 <j<JMAX.

ANCy 4 + AP Cpo i1 + BP'Cyy iy + BV Cpy jt + CPCs

+ CS4)Cp2,j+l = D(lz) (AIO)
Am-lcm—l,jﬂ + Ak‘:‘ll CpN—l,j+1 + BﬁlleN,j+l + B(4)CpN.j+l
+ Cm—lcsjvﬂ,jﬂ + C%lICpN+l,j+l = Dﬁll (A11)
SYMBOLS

Qo Q;; coefficients in Eq. (1)
by, by exponents in Eq. (1)

Cu concentration of solute i in fluid phase of the bath (g/cc)
Co; initial value of Cj
G concentration of solute in pore-fluid phase (g/cc)

Coa value of C, assumed



13:27 25 January 2011

Downl oaded At:

NONEQUILIBRIUM MULTICOMPONENT ADSORPTION MODEL 495

C, concentration of solute phase (per unit volume of particles)
(g/cc)

D, effective diffusivity in pore fluid (cm?/s)

D, effective diffusivity in particle solid phase (cm?/s)

K, mass-transfer coefficient between liquid and particle (cm/s)

K, adsorption rate constant for solute i (h™!)

n number of adsorbed solutes

r radial distance in particle (cm)

R radius of particle (cm)

t time (s)

Greek Letters

Ar increment along the radius r
At increment in time

€ bath void fraction

& particle void fraction

Superscripts

* equilibrium value

Subscripts

eq equilibrium value

i index for grid points along the radius
J time-step index

IMAX maximum number of time steps

N number of increments along the radius
neq nonequilibrium value

D pore

s solid
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